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Stress-dependent Peierls potential: Influence on Kink-pair activation
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Atomistic calculations based on the nudged elastic band method for a Lomer dislocation in aluminum
evidence a dependence of the Peierls potential on the applied shear stress in such a way that the Peierls stress
predicted from the zero-stress potential is half its true value for the case considered here. Stress-dependent
Peierls potentials that are extracted are then introduced as substrate potentials in a string model with a line
tension (LT) adjusted to match the dislocation kink width obtained from atomistic simulations. The LT model
is found to predict accurately dislocation saddle configurations and corresponding kink-pair activation enthal-
pies for a wide range of stresses. In particular, it is shown that the stress dependence of the Peierls potential is

required to model with accuracy the nonlinearity of the enthalpy-stress curve.
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I. INTRODUCTION

It has long been recognized'? that the potential energy of
a dislocation, commonly called the Peierls potential, is a pe-
riodic function of the position of the dislocation in the crys-
tal. Its derivative yields the lattice stress that materializes the
resistance of the crystal to dislocation glide. The maximum
lattice stress is the Peierls stress, i.e., the minimum stress to
be applied to force a dislocation to glide athermally (i.e., at 0
K) in an otherwise perfect crystal from one stable position
(Peierls valley) to the next. In high Peierls-stress crystals,
such as body-centered cubic (bcc) (Ref. 3) and hexagonal
metals,* at low temperature, when the applied stress is below
the Peierls stress, dislocations move from one Peierls valley
to the next by the thermally activated nucleation and propa-
gation of kink pairs.’ The dislocation velocity then depends
exponentially on the kink-pair nucleation enthalpy H, a de-
creasing function of the applied stress 0. In this context, the
Peierls stress can be equivalently defined as the applied
stress at which the kink-pair formation enthalpy becomes
zero, H(op)=0.

The simplest model for dislocation glide that accounts for
a Peierls stress is the so-called line tension (LT) model,®8
where the dislocation is viewed as an elastic string moving
on a periodic substrate potential that corresponds to the
Peierls potential, denoted Vjp hereafter. Within this model,
the equilibrium shape of the dislocation line y(x) is the so-
lution of a one-dimensional (1D) scalar field equation of the
Klein-Gordon-type,

&+
—V},[y(x)]+oAb+Tﬁ—);=O, (1)
X

where b is the Burgers vector and T is the line tension. De-
pending on the functional form of Vp, the model takes dif-
ferent names: ¢’—¢* or Eshelby theory for a fourth-order
polynomial potential and continuous Sine-Gordon (SG) and
discrete Frenkel-Kontorova (FK) theories for sinusoidal
potentials.”!? The exact form of the kink-pair activation en-
thalpy H(o,4) depends on the shape of the substrate potential,
which in classical LT models remains invariant with the ap-
plied stress. For the SG theory, asymptotic expressions have
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been obtained at low and high stresses!’"!2 and the full curve

is known numerically.!®> The enthalpy decreases from H(0)
=2F,, the kink-pair formation energy at zero applied stress,
down to H(op)=0 at the Peierls stress.

Recently,'#"1® the enthalpy H(o,) has been determined
from the three-dimensional (3D) molecular static (MS) simu-
lations for different high Peierls-stress dislocations using the
nudged elastic band (NEB) method,'” a saddle-point search
method. The kink-pair expansion energy was also obtained in
Si using the same method.'® In Ref. 15, it was found that
H(o,) decreases more rapidly than usually assumed and be-
comes negligibly small for stresses well below the Peierls
stress. This property was tentatively related to the discrep-
ancy reported in the literature between experimental and
simulated Peierls stresses. In the present paper, we will not
discuss this discrepancy but address the origin of the rapid
decrease in the enthalpy H(o,) through a combination of
atomistic NEB calculations and a LT model.

As in Ref. 15, we consider a Lomer dislocation in a face-
centered-cubic (fcc) aluminum crystal, which is well known
for having a compact core and a high Peierls stress. Working
with an edge dislocation in fcc metal allows several simpli-
fications, as compared, for example, to screw dislocations in
bee crystals.!°-2! First, its motion is planer which allows to
define without ambiguity a one-dimensional reaction coordi-
nate between Peierls valleys. Second, it avoids uncertainties
associated with the use of central force embedded atom
method (EAM) potentials in bee transition metals where d
orbitals involve directional bonds.?? Finally, the kinks that
form in pairs on edge dislocations are symmetrical, and as
will be seen in the following, they are more amendable to a
representation within a LT model. The main finding here is
that the Peierls potentials determined at the atomic scale
from NEB calculations on straight dislocations evidence a
marked stress dependence. The same conclusion was re-
cently drawn by Groger and Vitek?® for screw dislocations in
molybdenum and tungsten using a different approach. To es-
timate the importance of such a stress dependence, we em-
ploy a LT model in which the straight dislocation Peierls
potential is introduced as a substrate potential. The stiffness
is adjusted such that the LT kinks have the same extension as
those in atomistic calculations. Following that method, the
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FIG. 1. (Color online) Dislocation configurations: on the left-
hand side, transient state of the Lomer core with a kink pair be-
tween Peierls valleys; on the right-hand side, corresponding line
shape obtained from an analysis of the displacement field within
line tension model (see text for details).

LT model is found to predict accurately the kink-pair en-
thalpy curve and corresponding saddle configurations as de-
termined by NEB calculations on kinked dislocations. In the
LT model, switching off the stress dependence of the Peierls
potential proves to dramatically modify the kink-pair activa-
tion enthalpy and to control its nonlinear dependence with
applied stress.

II. COMPUTATIONAL TECHNIQUE

The EAM potential developed by Ercolessi and Adams>*
is used to model an aluminum crystal. The Lomer dislocation
is an edge (110){001} dislocation. It is well known for hav-
ing a high Peierls stress, 1600 MPa with the present inter-
atomic potential.'> As illustrated in Fig. 1, the simulation cell
is oriented such that horizontal planes are Z=[001] glide
planes. The dislocation lies along the X=[110] direction. Its
Burgers vector and the glide direction are along the Y

=[110] direction. The cell height in the Z direction is h
=6.6 nm and the glide distance in the Y direction is Lg;
=14.4 nm. We performed either two-dimensional (2D) simu-
lations where L, the dislocation length in the X direction, was
limited to a periodic unit cell or 3D simulations with L
=9.7 nm. We simulated a periodic array of dislocations
(PADs) by applying periodic boundary conditions in the X
and Y directions.” Free boundary conditions are used in the
Z direction, and external stresses are applied by adding shear
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forces to the atoms in the upper and lower surfaces of the
simulation cell.

Although we are aware of its limitations, we also used the
EAM potential developed by Mendelev et al.’° to model iron
crystals to serve as a comparison. It is the only EAM poten-
tial published to date that predicts a compact nondegenerate
screw dislocation core, in agreement with ab initio
calculations.?’” The computational cell geometry was adapted
to the screw dislocation with a (111) Burgers vector: hori-

zontal Z=[101] glide planes, dislocation line and Burgers

vector along X=[111], and glide direction along Y=[121].
The cell dimensions were the same as those for the Lomer
dislocation.

The NEB method,'” with improved tangent calculation?®
and climbing procedure,” is used to determine the minimum
energy path (MEP) between Peierls valleys, i.e., between ini-
tial and final configurations where the dislocation is relaxed
in successive Peierls valleys. The same methodology was
used in Ref. 15. We employed 30 replica and a spring con-
stant of 1 eV nm™'. MEPs were determined for either
straight dislocations or dislocations containing a kink pair. In
the first case, the 2D simulation cell is used with an initial
path linearly interpolated between initial and final configura-
tions. In the second case, the 3D cell is used and the initial
path contains an expanding kink pair by building replica
where atomic positions correspond to the initial configura-
tion except in a slab around the YZ central plane where
atomic positions are taken from the final configuration. The
initial path is then relaxed using a quenched dynamics
algorithm.'”

The substrate potential in LT models is a function of the
position of the dislocation core in the glide plane, denoted by
y. The latter, computed in the following way, will serve as
reaction coordinate for the NEB calculations. We consider
the two Z planes immediately above and below the disloca-
tion core and compute the average difference in displacement
per atom between these two planes in the Y direction of the
Burgers vector, Auy=(uy—uy). Displacements are computed
with respect to the initial configuration. According to Orow-
an’s law, Auy increases linearly when the dislocation glides
in the simulation cell with an increment of b when the dis-
location crosses the entire cell. Thus, for a displacement of
one Peierls valley (the distance between Peierls valleys is d
=b=0.285 nm for the Lomer dislocation), Auy increases by
bd/Ls=b/Np where Np is the number of Peierls valleys in
the simulation cell. We define a reaction coordinate (called
hereafter the internal reaction coordinate) that varies from 0
to 1 along the reaction pathway by setting

N
Oy = (1t — u»;”. )

In 2D simulations with straight dislocations, y=d6y,, is the
position of the dislocation core in between the initial (y=0)
and final (y=d) Peierls valleys. In 3D simulations with
kinked dislocations, y is the average position of the core. As
shown on the right-hand side (rhs) of Fig. 1, the shape of a
kinked dislocation y(x) can be determined by computing 6y,
in slabs of width b along the dislocation. Also, r=L#6, yields
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FIG. 2. (Color online) (a) Enthalpy per unit length and (b)
Peierls potential for the Lomer dislocation in fcc aluminum mod-
eled with EAM potential developed in Ref. 24 and for different
applied stresses. The legend shown in (a) also applies in (b). Lines
result from cubic splines.

directly the distance between kinks in the 3D cell. Note that
we could a priori define the reaction coordinate by taking the
difference in displacement between any two planes on each
side of the glide plane and in particular between the upper
and lower Z surfaces of the simulation cell. This choice of
coordinate, denoted by 6, hereafter, leads however to un-
physical lattice stresses as discussed in Sec. V.

II1. PEIERLS POTENTIAL

We first apply the NEB method to a straight dislocation in
order to determine the Peierls potential Vp. NEB calculations
give access to the difference of enthalpy between replica
along the MEP and the initial configuration, AH,,

AH o= Veam = V(IZZAM — 04bd Ogy,. (3)

Examples are given in Fig. 2(a) for different applied stresses
o4. The first two terms on the rhs of Eq. (3) correspond to
the internal energy of the replica computed from the position
of the atoms and the EAM interatomic potential (Vi,y, is the
internal energy of the initial configuration). The third term on
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the rhs of Eq. (3) is the work of the applied stress—function
of the difference of displacement between the upper and
lower surfaces, i.e., Oy (Which is zero in the initial configu-
ration at each stress). This term increases along the MEP and
is responsible for the enthalpy difference between the initial
and final configurations seen in Fig. 2(a) for nonzero applied
stresses.

The internal energy Vgaym involves two terms: (i) the
strain energy that stems from the relative displacement of the
planes parallel to the glide plane induced by the applied
stress and (ii) the potential energy of the dislocation core,
which is the Peierls potential V. To extract this potential, we
need to subtract from Vgay the strain energy stored in the
elastic medium between the external surfaces (where the
stress is applied) and the internal surfaces that bound the
glide plane. This formulates as o,bd@g,,—o,bd b, on the
condition that the dislocation elastic stress field is not modi-
fied during the transfer between Peierls valleys, which is
verified since the Burgers vector is conserved and the dislo-
cation remains straight all along the MEP. The Peierls poten-
tial is thus expressed as

Vp(Oim) = Veamt — Veam — 0abd by + 04bd by

=AHtol( 0Int) + o4bd Oy (4)

When used in a LT model (see Sec. IV), Vp is expressed as a
function of the dislocation position y=d6,. Equation (4)
then ensures that at any position between Peierls valleys, the
enthalpy of the dislocation expressed in terms of its core
position V,(y)—o4by equals the total enthalpy in the cell
AHg.

Peierls potentials are shown in Fig. 2(b) for different ap-
plied stresses. Note that the Peierls potential is periodic
along the Y direction and since we reported a single period,
only one minimum appears. Our choice of reaction coordi-
nate is such that 6;,,=0 for every initial configuration, which
explains the shift of the Peierls potential with applied stress
and the appearance of a minimum on the right-hand side of
the figure. It appears clearly that the shape of the Peierls
potential depends on the applied stress, in stark contrast with
the conventional application of LT models. We note in Fig.
2(b) a metastable configuration midway between the initial
and final configurations. The weak stability of this configu-
ration is due to a configuration of high symmetry that disap-
pears for nonzero applied stresses.

The Peierls potential for a screw dislocation in bcc iron
was determined using the potential of Mendelev et al.?® to
ensure that the above stress dependence is not a particular
case of the Lomer dislocation. The result, presented in Fig. 3,
evidences again a pronounced stress dependence of the
Peierls potential. Also, there is a marked local minimum
along the paths, of much larger stability than in the Lomer
case. This intermediate metastable configuration, already re-
ported for the present EAM potential in Refs. 19 and 27,
corresponds to the split core described by Suzuki* and
Takeuchi.! The existence of such a core is a matter of
debate?® which is the main reason why we chose to study a
simpler system, namely, the Lomer dislocation.
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FIG. 3. (Color online) Peierls potential for a screw dislocation in
bee iron modeled with the EAM potential developed in Ref. 26.

The resistance to dislocation glide is materialized by the
force experienced by the dislocation core along the MEP, i.e.,
the lattice stress,

V;3( 0Int)

5 (5)

o( elnt) =

In Fig. 4, the lattice stress o(6,,) is plotted against the reac-
tion coordinate 6y, for different applied stresses and for the
Lomer dislocation. Stresses were obtained after spline fitting
and differentiation of the Peierls potentials shown in Figs.
2(b) and 3. Lattice stresses depend on the applied stress,
similarly to Peierls potentials.

According to Eq. (1), mechanical equilibrium for a
straight dislocation is such that its core position ys¢=d 6,
satisfies o4=0(ys). Here, 6;,,=0 corresponds to the initial
equilibrium at each applied stress, and we can check in Fig.
4 that the lattice stress at the origin of the reaction paths (as
well as at their ends) is indeed equal to the applied stress to
within a small error due to numerics. We also note in Fig. 4,
by comparison of the different curves, that the maximum
lattice stress along the MEP increases with applied stress,
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FIG. 4. (Color online) Lattice stress at different applied stresses
for a Lomer dislocation.
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and more importantly, the difference between initial and
maximum stresses decreases. For instance, in Fig. 4 the dif-
ference is about 800 MPa at zero applied stress and drops
down to about 100 MPa for an applied stress of 1400 MPa.
The Peierls stress op is reached when this difference van-
ishes, since beyond this point, Eq. (1) has no solution. From
Fig. 4, we can infer that this occurs for an applied stress
close to 1600 MPa, which is precisely the Peierls stress for
the Lomer dislocation determined from MS simulations at
increasing applied stress.'> The fact that the Peierls stress can
be accurately predicted by differentiating the Peierls poten-
tial with respect to 6;nt shows that a reaction coordinate, as
defined in Eq. (2), is an accurate measure of the position of
the dislocation core in its glide plane. We must notice that
the foregoing computation for the Peierls stress cannot be
carried out straightforwardly for screw dislocations in bcc
crystals because the reaction coordinate for such dislocations
is known to be two dimensional,”® a consequence of their
ill-defined glide plane. In the spirit of Ref. 23, a generaliza-
tion of our approach would require a 2D mapping of the
atomic displacements and a differentiation of the enthalpy
with respect to 2D coordinates. Other subtleties about
Peierls-stress computation at the atomic scale were identified
by Ngan in Ref. 32.

We conclude that the concepts of Peierls potential and
lattice stress at the heart of LT models are relevant for
atomic-scale simulations; initial and final lattice stresses are
equal to the applied stress and the Peierls stress for a straight
dislocation is reached when the maximum lattice stress
equals the applied stress. However, unlike conventional LT
models, the Peierls potential is a function of the applied
stress and stiffens with the latter. This stress dependence
stems mainly from the dislocation core that adapts to the
applied stress in order to increase its stability.

IV. STRESS-DEPENDENT LINE TENSION MODEL
A. Evaluation of the line tension

We use the Peierls potentials determined in Sec. III for the
Lomer dislocation to solve the LT model of Eq. (1) and pre-
dict the kink-pair enthalpy and unstable dislocation configu-
rations as a function of the applied stress. In Eq. (1), the only
remaining parameter is the dislocation line tension 7, which
is expressed from the dislocation line energy (LE) E; as®?

2
T=E, + d—EzL ) (6)
d¢p

The second term reflects the dependence of the disloca-
tion energy on its character, i.e., on the angle ¢ between the
line direction and Burgers vector. The line energy itself is
composed of an elastic (E,) and a core (E,.) contribution.

In an isotropic elastic medium, for an edge dislocation,**
2
ub R
Ep=Eq+Ecore = ln( _> + Ecores (7)
47(1-v) \r,

where ©=3.48X 10* MPa is the (110){001} shear modulus
and v is the Poisson ratio, which we computed for the
present interatomic potential »=0.3137. The lengths R and r,
are the outer and inner cutoff radii.
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In Eq. (6), the line energy E; is easily computed from MS
simulations but the second term is more difficult to extract
because the line direction cannot be changed continuously in
atomistic simulations. On the other hand, the elastic contri-
bution to 7 can be computed by using the elasticity theory.
For an edge dislocation in an isotropic medium, E
+d’E,/d¢?*=(1-2v)E,.>* E, is determined by computing
the line energy E; in cells of different dimensions and using
Eq. (7) in order to separate the elastic and core contributions,
as was done in bce tantalum by Yang er al.3> We used cells of
different sizes but the same aspect ratio h/L; and same
boundary conditions as presented in Sec. II. E; was com-
puted as the energy difference between the simulation cell
containing a dislocation and the cell containing the same
number of atoms but without the dislocation. Since the cell
with dislocation contains an extra-half plane, the energy for
the cell without dislocation was taken as the mean energy
between a cell without the extra-half plane and one with a
full additional plane. In Eq. (7), R was taken as the smallest
dimension of the simulation cell, i.e., R=h/2, and r.=b. We
obtained E;=2.144 In(h/2b)+2.25 eV nm~'. The preloga-
rithmic factor agrees well with that in Eq. (7), ub*/4m(1
-1)=2.04 eV nm™!, as reported for other metals.*> For the
cell size used in the 3D-MS simulations, 2=12b and thus
E; =75 eVnm™', E ;=525 eVnm™!, E. =225 eV nm™,
and T.,=1.95 eV nm~'. The only term that remains to com-
plete the evaluation of T is d’E,,./d¢?, for which unfortu-
nately there is no computational method. Two limiting cases
can however be considered where d°E,,./d¢? is either zero
or scales as the elastic term. In the first case, we obtain T
=(1-2V)E4+E.,.=42 eV nm™' and in the second case, T
=(1-2v)E;=2.8 eV nm™'.

Since the uncertainty on the value of the line tension 7 is
large, we preferred to fit this parameter on a dislocation
property, the equilibrium kink width at zero applied stress.
To that purpose, we worked with a LT model using the
Peierls potential at zero applied stress obtained in Sec. III.
We studied an elastic string of the same length as the dislo-
cation in atomistic simulations (L=9.7 nm), containing a
fully formed kink pair. The string kink shape was compared
with that obtained through NEB atomistic calculation. As
explained in Sec. II, the shape of the atomistic dislocation
was determined by computing the internal reaction coordi-
nate in slabs of width b along the dislocation line.

Figure 5 compares the LT and 3D-MS kink shapes. The
value of the line tension yielding the best agreement is T
=3.6 eV nm~!, which is in between the two bounds com-
puted above. A comparison of the kink shape shown in Fig. 5
with the well-known solution of the SG theory,

y(x) = Z—d[tan_1 exp<)—c>] , (8)
T &

gives an adjusted value £=0.29 nm. The kink width (that
corresponds to the linear extrapolation of the kink from y
=0 to y=1) is w&~3.2b. It corresponds to a rather narrow
kink, particularly in comparison with the 20b found for
screw dislocations in bec iron.¢ This result is however con-
sistent with the fact that the line tension of a screw disloca-
tion is significantly larger than that of an edge. It is also
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FIG. 5. (Color online) Kink shape predicted by 3D-MS calcula-
tions for Lomer dislocation (open symbols) and by a LT model with
T=3.6 eV nm™! (full line) at zero applied stresses.

worth noticing that for edge dislocations, left and right kinks
are perfectly symmetrical since they are of the same nature,
in contrast to the screw case.

B. Prediction of the LT model

The accuracy of the LT model can now be tested on acti-
vated kink-pair states at nonzero applied stresses. The Peierls
potentials obtained at different applied stresses in Sec. III
were employed as variable substrate potentials. The kink-pair
saddle configuration was determined to computer precision
by using the NEB replica with the maximum enthalpy as
starting configuration in a Newton-Raphson solver.>” Unfor-
tunately the computational load involved in such a technique
is prohibitive for 3D-MS calculations. In the latter case, the
kink-pair activated state was identified with the NEB replica
having maximum enthalpy. Using 30 replica and the climb-
ing NEB procedure reduces the computational error. Profiles
issued from 3D-MS simulations down to 100 MPa are re-
ported in Fig. 6 as open symbols along with the LT profiles
shown as full line. A remarkably good agreement is obtained
at all stresses. Noticeably, the kinks in 3D-MS simulations
are not fully formed in the activated state. Determination of
activated states below 100 MPa, where kinks are fully
formed, was difficult because the enthalpy curve along the
MEP near the maximum is very flat. This point will be fur-
ther discussed in Sec. V.

The corresponding activation enthalpy H(o,) is shown in
Fig. 7 as open circles for the atomistic computations and as
filled triangles for the LT model with stress-dependent sub-
strate. Both results are close to each other over the entire
stress range. The agreement is particularly satisfactory since
the only fitted parameter, 7, was adjusted on an indirect
property of the dislocation, i.e., its kink width at zero applied
stress. We note that the kink-pair formation energy, which is
the activation enthalpy at zero applied stress, 2E;,=0.42 eV,
is very well reproduced by the LT model even if this value
was not fitted. For comparison, we added in Fig. 7 the pre-
diction of the SG theory with fixed sinusoidal potential. In
this case, the activation enthalpy is well approached by
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FIG. 6. (Color online) Lomer dislocation unstable configura-
tions predicted by 3D-MS NEB calculations (symbols) and a LT
model with stress-dependent Peierls potential (curves) for different
applied stresses noted in the figure.

Kocks’ law H(o)=2E[1-(o/0op)’]?, with p=0.8 and ¢
=1.286.% The two parameters (E, and o) were fitted on the
simulation values. As reported previously in Ref. 15, the
kink-pair activation enthalpy computed through 3D-MS
simulations has a curvature much more pronounced than the
SG prediction. According to the much better agreement ob-
tained between 3D-MS calculations (circles in Fig. 7) and
stress-dependent substrate LT model (triangles in Fig. 7), we
conclude that the marked nonlinear behavior of the kink-pair
nucleation enthalpy is due to the stiffening of the Peierls
potential.

V. DISCUSSION
A. Stress-dependent Peierls potential

In the present work, 2D NEB calculations were used to
determine the Peierls potential of a fcc Lomer and a bcc

T T
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A—A 1.T variable potential

L —— SG fixed potential B
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FIG. 7. (Color online) Kink-pair formation enthalpy curves ob-
tained from 3D-MS NEB calculations for Lomer dislocation
(circles) from a LT model with stress-dependent Peierls potential
(filled triangles) and from SG theory (solid line).
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screw dislocation. It was shown that the potential depends on
the applied shear stress. This effect stems from an influence
of the applied stress tensor on the dislocation core structure.
We believe that it is a general effect that concerns any dis-
location and may include nonglide stresses, i.e., components
of the applied stress tensor perpendicular to the dislocation
Burgers vector, in cases when the dislocation core is sensi-
tive to such stresses. This is particularly the case for screw
dislocations in bce metals, as recently shown by Groger and
Vitek?? in bee tungsten and molybdenum. These authors did
not use the NEB method to obtain the Peierls potentials di-
rectly from atomistic simulations. Instead a generic func-
tional form was adjusted to reproduce the Peierls-stress de-
pendence on nonglide stresses computed at the atomic scale.
Such method allowed one to account for the two-
dimensional energy landscape of the screw dislocation core
in the {111} plane perpendicular to its Burgers vector. Re-
markably, the potentials obtained were shown to depend on
all the terms of the applied stress tensor. To consolidate our
belief on the widespread of our conclusions, we performed
the same type of computations on the phenomenological 1D
FK model and found that the enthalpy of the single kink
profile in between two stable positions also depends on the
applied shear stress.

The Peierls potentials obtained in the 2D NEB atomistic
calculations stiffens with the applied stress, reflecting a sta-
bilization of the dislocation core. If the Peierls potential of
the Lomer dislocation at zero applied stress is used to predict
the Peierls stress (which corresponds to the maximum lattice
stress along the MEP), a value of 800 MPa is obtained,
whereas the true Peierls stress is 1600 MPa. The stress de-
pendence cannot therefore be neglected for the Lomer dislo-
cation studied here. According to Fig. 3, a similar feature can
be expected for the screw dislocation in a bec iron computed
with the interatomic potential of Mendelev et al.?

Inserting the stress-dependent Peierls potential in a LT
model yields an accurate estimate of (1) the kink-pair forma-
tion energy, (2) the enthalpy-stress curve, and (3) the un-
stable dislocation shapes for all stresses above 100 MPa. The
stress dependence in Fig. 7 implies a more rapid decrease in
the kink-pair formation enthalpy than in the case of the SG
theory. This effect can be illustrated through a phenomeno-
logical approach. For instance we may choose a standard
form for the Peierls potential as the cosine potential of the
SG theory Vp(y)=A[1-cos(2my/d)] and assume that A is a
linear function of the applied stress A=Ay(1+ao,) where a
is a positive constant accounting for the stiffening of the
dislocation potential. In Fig. 8, we show the kink-pair nucle-
ation enthalpy for the classical SG theory (full line) and the
modified SG model with a=0.6 and 0.8 MPa~!. The en-
thalpy is scaled by the kink-pair formation energy and the
stress by the Peierls stress. The modified SG enthalpy varies
more steeply at low stresses than with a fixed potential and
becomes more flat with lower values at larger stresses. The
same observations hold for the atomistic data reported in Fig.
7.

The Peierls potential has to be differentiated with respect
to the reaction coordinate in order to compute the lattice
stress used in the LT model. The choice of the reaction co-
ordinate is thus of prime importance. Here we could use a
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FIG. 8. (Color online) Kink-pair formation enthalpy against ap-
plied stress for the SG theory (solid line) and for the modified SG
model with stress stiffening Peierls potential. The potential param-
eter is @=0.6 MPa~! (dashed line) and a=0.8 MPa~' (dotted-
dashed line).

scalar variable 6y, that defines the position of the dislocation
core in its glide plane because of the choice of an edge dis-
location, but a 2D reaction coordinate would be better suited
for screw dislocations that do not have a definite glide
plane.”? Note also that in the present case, @, which is
computed from the difference of displacement between the
upper and lower surfaces of the cell cannot be used because
it varies very nonlinearly between the two Peierls valleys. As
shown in Fig. 9, 6g, increases rapidly at the start and end of
the path and is almost flat in between. Differentiation of the
Peierls potential with respect to 6, thus leads to unphysical
lattice stresses. Also, the important difference between 6y,
and 6, implies through Eq. (4) that the Peierls potential Vp
is different from, and should not be confused with, Vgau
which is the potential energy of the atoms in the simulation
cell.
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FIG. 9. (Color online) External reaction coordinate g, as a
function of internal reaction coordinate 6, along the MEP of a
straight Lomer dislocation at different applied stresses.
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B. Line tension and line energy models

The main issue addressed in the present work was to dem-
onstrate the feasibility for a multiscale approach through
which a LT model, often used phenomenologically at the
mesoscopic scale to treat experimental data on thermally ac-
tivated dislocation glide,* provides a satisfactory description
of the kink shape and kink energetics down to the atomic
scale where it is usually believed to fail.

We used a LT model with 7 adjusted on an indirect quan-
tity, the atomistic kink width. The value obtained is in the
range predicted by elasticity theory (see Sec. IV). In the lit-
erature, another model has been proposed, which is the LE
model of Dorn and co-workers.***! LE and LT models are
not equivalent because the LE model does not account for
the dependence of the line energy on the dislocation orienta-
tion. However a general framework can be proposed in
which both models (i.e., LT and LE) are derived as approxi-
mations. The energy of a dislocation of shape y(x) is ex-
pressed as

E= f {[Ve(y) + EL(y)IN1 +y" 2 = aubyldx,  (9)

where the only assumption is that the dependence of the line
energy on the dislocation orientation [parametrized here by
y'(x)=dy/dx] is independent of the dislocation core position
y. For a straight dislocation at position y,, the line energy
reads Vp(yg)+E.(0), i.e., in agreement with the notations
used above, E;(0) is the dislocation energy at equilibrium,
and Vp measures the energy variation between Peierls val-
leys. In the LE model, E;(y')=E;(0) is constant. If the ori-
entation dependence is accounted for but y’ is assumed
small, Eq. (9) can be expanded to second order and the cor-
responding Euler-Lagrange equation is at first order,

P
—Vh(y) + aub + [Vp(y) + EL(0) + EZ(O)]&z—z =0. (10)

This equation is equivalent to Eq. (1) using the definition
of T'in Eq. (6), except that the line tension term now includes
the Peierls potential. We found that 7=3.6 eV nm™' while
Vp in Fig. 2 is at most equal to 0.16 eV nm™! and can there-
fore be safely neglected. In contrast, neglecting E;(0) as
done in the LE model would lead to a strong overestimation
of the dislocation line stiffness as shown in Sec. IV. As a
consequence, the LT model is better adapted than the LE
model.

A final point about the LT model is that an edge disloca-
tion is the best adapted configuration because the left and
right kinks on edge dislocations are equivalent (in energy
and width), an inevitable property of kinks in the LT models
of Egs. (1) and (9). Indeed, the second-order expansion ap-
plied to the dislocation energy does not differentiate between
a positive or negative y’ dependence of the dislocation en-
ergy. Treating screw dislocations, where the kinks are not
equivalent, would require a higher-order expansion of Eq.

9).
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FIG. 10. (Color online) Energy of the kink pair computed along

the reaction path at zero applied stress. The open symbols corre-
spond to the atomistic computation.

C. Line tension and elastic interaction models

In Sec. IV, the LT model was shown to reproduce the
enthalpy and unstable shapes at least down to 100 MPa. Be-
low this applied stress, MEPs obtained with the NEB method
are very flat near their maximum, making it difficult to de-
termine with precision unstable configurations.

In the classical theory of kink-pair nucleation,*” an ap-
proach different from the LT model is used to describe acti-
vated states at low applied stresses, the elastic interaction
(EI) approximation.’**>* Indeed, kinks in a LT model inter-
act at short range only with an exponentially decaying
energy® while in a 3D elastic medium, the kink-kink inter-
action is long ranged and Coulomb-type.**7 As a result, in a
LT model at finite stress, the kinks are never fully formed in
the activated state while in a 3D medium at low stresses, the
activated state is made of two fully formed kinks with an
unstable equilibrium distance that diverges at zero applied
stress. The unstable configurations shown in Fig. 6 down to
100 MPa contain only a bulge and are consistent with a LT
model. If the EI approximation has a range of validity, it is
below 100 MPa. Unfortunately, as mentioned above, we
could not determine with precision the unstable configura-
tions in this stress range.

On the other hand, the regime of long-range interaction
between kinks can be seen in the variation in the kink-pair
energy along MEPs. Figure 10 shows the 3D NEB pathways
obtained at zero applied stress as open circles, as a function
of 6, which in 3D yields the distance between kinks. We
can identify the two regions of nucleation (6,,<0.15) and
annihilation (6, >0.85) where the energy varies rapidly,
separated by the region of kink-pair expansion where the
energy varies more slowly. The maximum energy corre-
sponds to 6;,,=0.5, i.e., when the kink and antikink are at
equal distance with their periodic images. The reason is that
when no external stress is applied, the EI approximation for
an infinite dislocation has no unstable position. Here the
critical configuration is set only by the symmetry of the in-
teraction with the periodic images. In Fig. 10, we have added

2
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the MEP obtained with the LT model and two predictions of
the EI model depending on the parametrization of the model,
to be discussed below. As expected, the LT model reproduces
accurately the phases of nucleation and annihilation while
the EI model accounts for the variation in the energy during
the phase of expansion. The LT model predicts a constant
energy in the expansion phase because of its short-range
kink-kink interaction, while the EI approximation fails to
reproduces the nucleation and annihilation phases because it

assumes fully formed kinks.
In the EI model, the energy of an expanding kink pair is

2
V(r)=2EK—M, (11)
2r

where the second term is the long-range interaction potential
given by the elasticity theory.***’ Another expression has
been proposed*®*° to account for the finite width of the kinks
but leads to similar results as below. The curves shown in
Fig. 10 were obtained by accounting for the kink interaction
with their periodic images. In Eq. (11), T, is the prelogarith-
mic factor of the elastic line tension as described in Eq. (7)
multiplied by (1-2») to account for the orientation depen-
dence of the edge dislocation line energy. The value thus
obtained is 0.8 eV nm™!, leading to the dashed curve, which
varies too slowly in comparison with NEB results. Upon
adjustment, we find Ty=1.3 eV nm~!. A larger fitted value
for T} indicates a kink-kink interaction stronger in atomistic
simulations than in an elastic medium, an observation al-
ready made by Duesbery and Basinski®® that would be worth

investigating in more details.

VI. CONCLUSIONS

The main conclusions of our atomistic study are the fol-
lowing. The Peierls potential depends on the applied stress
and this dependence controls the steep decrease in the kink-
pair formation enthalpy at low stresses. Such an effect was
found particularly pronounced for a Lomer dislocation in Al
and is expected to occur with more or less amplitude for
other dislocations with high Peierls barrier in different mate-
rials.

According to the present work, the Peierls potential ob-
tained at zero applied stress could not be used to predict the
Peierls stress but rather, either stress- or strain-controlled
simulations are required. The LT model can be used to de-
scribe phenomenologically high Peierls-stress dislocations at
least down to 100 MPa. Below this value, we may enter the
low-stress regime of the EI model with possibly a stronger
long-range interaction than predicted from elasticity theory.
We expect that the LT model may be extended in order to
treat screw dislocations where the kink and antikink are
asymmetrical.
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